An overview of thermal infrared and visible-to-shortwave infrared instrument calibration activities for SnowEx Grand Mesa

Christopher J. Crawford

Landsat Science Team Scientist Science Liaison, EROS Calibration Center of Excellence (ECCOE) ASRC Federal InuTeq, contractor to the U.S. Geological Survey EROS

Prior Affiliations

Earth System Science Interdisciplinary Center, University of Maryland-College Park Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center

Contributors

- C. Chickadel, *U of Washington*
- D. Hall, U of Maryland; NASA/GSFC
- M. Holm, NASA/GSFC
- P. Houser, George Mason U
- D. Jennings, NASA/GSFC
- M. Jhabalva, NASA/GSFC
- E. Kim, NASA/GSFC
- J. Lundquist, U of Washington
- A. Lundsford, NASA/GSFC
- C. Polashenski, CRREL
- E. DeMarco, NASA/GSFC
- A. Wu, NASA/GSFC

Presentation Overview

- (1) SnowEx ground and airborne thermal infrared (TIR) instrument calibration
- (2) Visible-to-shortwave infrared (VSWIR) ground instrument calibration
- (3) Why SnowEx calibration/validation (Cal/Val) matters
- (4) TIR/VSWIR snow measurement / science requirements

Presentation Objectives

- (1) Briefly describe SnowEx TIR instrument calibration techniques and communicate initial results on laboratory, P-3 airborne and ground meteorological station cross-calibration.
- (2) Briefly describe VSWIR ground instrument calibration techniques and communicate results on the VSWIR spectrometer cross-calibration efforts.
- (3) Offer the SnowEx project some recommendations on calibration & planning for future campaign years.

Hall et al. The Infrared Sensor Suite for SnowEx 2017. IGARS Proceedings, 2017

SnowEx TIR Instruments

- (1) Everest Interscience EnviroTherm TIR sensor (transfer standard)
 - $FOV = 10^{\circ}$
 - 8-14 micron temperature response in C
 - (3) Temperature range = -30 C to 80 C
 - +/- 0.3 C accuracy
- (2) Contact TIR Thermometer (cross-calibration verification)
 - (1) Contact probe
 - +/- 0.2 C accuracy
- (3) KT-15 82D Remote Thermometer (airborne P-3)
 - (1) FOV = 2 degree (100 m at 10,000 ft AGL)
 - 8-14 micron temperature response in C
 - Temperature range = -50 C to 50 C
- Quantum Well Infrared Photodetector (QWIP) (airborne P-3)
 - (1) $FOV = 11 \times 9 \text{ degrees} (\sim 1.8 \text{ meters at } 10,000 \text{ AGL})$
 - (2) 7-10 micron response function in digital counts
 - ~0.02 C accuracy
- (5) Apogee MI-210 (Grand Mesa meteorological towers)
 - (1) $FOV = 22^{\circ}$ half angle
 - 8-14 micron temperature response in C
 - +/- 0.2 C accuracy

P-3 Cross-Calibration

Contact Thermometer

Met Tower Cross-Calibration

SnowEx TIR Blackbody Sources

- (1) NASA/GSFC Code 618 Laboratory Blackbody (stable source)
 - (1) Emissivity > 0.98
 - (2) Temperature range -10 C to 79 C
 - (3) Precision < 0.001 C
 - (4) Accuracy +/- 0.2 C
- (2) Everest Interscience Portable Blackbody (NIST traceable field source)
 - (1) Emissivity > 0.98
 - (2) Temperature range 0 C to 120 C
 - (3) Accuracy +/- 0.1 C
- (3) Portable Contact Blackbody (cross-calibration verification)
 - (1) Emissivity = > 0.98
 - (2) Temperature range: fluctuations with ambient

*SnowEx At-Sensor Target TIR Requirement was within 1°C

Field Blackbody

Contact Blackbody

Surface Temperature from TIR Measurements: the basics

Equation 1 (Fuchs and Tanner 1966)

 $R = e\sigma T^4$

where:

R is the energy flux of electromagnetic radiation e is the emissivity of any surface σ is Stefan-Boltzmann constant T is temperature in degrees Kelvin

Equation 2 (Fuchs and Tanner 1966)

 $W(^{\lambda})d^{\lambda}=e_{\lambda} E(^{\lambda},T)d^{\lambda}+(1-e_{\lambda})B(^{\lambda},T_{\delta})d^{\lambda}$

where:

 $W(^{\lambda})d^{\lambda}$ outward flux of thermal energy λ e_{λ} is emissivity of surface at wavelength $E(^{\lambda},T)$ is value of Planck's energy distribution law and surface temperature $B(^{\lambda},T_{\delta})$ is the radiant energy flux incident on the surface from the surrounding integrated radiative temperature

TIR Laboratory Calibration

TIR P-3 Airborne Cross-Calibration

TIR Ground Meteorological Tower Cross-Calibration

TIR Meteorological Tower Snow Surface Temperature

Benchmarking Against On-Orbit Landsat-7 ETM+ TIR (Feb. 15, 2017)

Summary of TIR Challenges & The Way Forward

- 1. Ground and airborne TIR instrument calibration is challenging due to changing physical (i.e., local winds, radiative heating) and logistical factors
- 2. Involvement of multiple TIR instruments with different spectral response functions, manufacturer calibration procedures, & variation in blackbody sources introduces additional complexity
- 3. Limited access to stable and traceable cold blackbody sources to support low temperature studies
- 4. Local radiative environment, sky radiation and temperature effects, & variations in the emissivity coefficient cannot be overlooked
- If SnowEx wants to pursue a TIR measurement design, then calibration must be central to this effort to clearly define snow measurement and science needs & requirements

Grand Mesa VSWIR Instrument Calibration / Ground Measurements

GSFC NIST Traceable Source

Spectrometer Cross-Calibration

Snow Transect Measurements (L)

Feb. 13th: SnowEx training

Feb. 14th: VSWIR logistics & protocols

Feb. 15th: TIR ground met tower cross-cal

Feb. 16th: VSWIR science data / ASO flight

Feb. 17th: VSWIR science data

Feb. 18th: VSWIR spectrometer cross-cal

Snow Pit Upwelling (E)

Snow Pit Downwelling (E)

GSFC VSWIR Spectrometer Laboratory Characterization / Calibration

GSFC NIST Traceable Source Characterization

CRREL VSWIR Spectrometer Short-term Characterization

GSFC & CRREL VSWIR Spectrometer Cross-Cal for Grand Mesa

GSFC VSWIR Snow Pit Measurements (Grand Mesa Week 2)

where:

 $\frac{\mathsf{E}_{\mathsf{up},\lambda}\left(\theta_{\mathsf{v}},\theta_{\mathsf{o}},\Phi\right)}{\mathsf{E}_{\mathsf{down},\lambda}\left(\theta_{\mathsf{v}},\theta_{\mathsf{o}},\Phi\right)}$ $BHR_{\lambda} =$

λ is wavelength E_{up} is upwelling spectral irradiance

Edown is downwelling spectral irradiance

 θ_v is viewing angle

Φ is solar azimuth

 θ_0 is solar zenith angle

Schaepman-Strub et al (2006)

Why Cal/Val Matters for SnowEx and its Satellite Mission Design

USGS/NASA Landsat 10 & Sustainable Land Imaging (SLI) Measurements / Snow Science Requirements

- (1) NASA currently has solicitations out on technology innovations under the SLI program https://sustainablelandimaging.gsfc.nasa.gov
- (2) USGS released RFIs on Landsat 10 and SLI user requirements in 2016 & 2017 https://remotesensing.usgs.gov/rca-eo/
- (3) The 2012-2017 USGS Landsat Science Team (LST) has made significant contributions to the requirements process via individual members and within LST working groups https://landsat.usgs.gov/landsat-science-team-meeting-jul-2017
- (4) USGS Reston and 2012-2017 USGS LST jointly held a 'Landsat Spectral Band Workshop' in May 2017
- (5) The outgoing 2012-2017 USGS LST is drafting a recommendation on Science, Measurements, and Data Product Requirements for Landsat 10 and beyond

Calibration Recommendations for Future SnowEx Campaigns

- (1) Instrument calibration and cross-calibration between investigators/institutions reduces measurement uncertainty and enables radiometric continuity
- (2) Traceability is foundational for evaluating an instrument's radiometric performance
- (4) Adhering to national and international standards fosters a Cal/Val best practices mentality
- (5) Cal/Val is often a meticulous and time consuming process that does not always lead to cutting edge science results, but is essential for benchmarking progress
- (6) Development of a coordinated SnowEx Cal/Val plan with broad cross-calibration participation is recommended for future campaigns

